TEORIAS E FILOSOFIAS DE GRACELI 242

 


sexta-feira, 13 de setembro de 2019


Constante de estrutura fina é a constante física que caracteriza a magnitude da força eletromagnética. Pode ser definida como
.
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
Nessa definição,  é a carga do elétron a constante de Planck a velocidade da luz no vácuo e  a permissividade do vácuo.
A constante de estrutura fina é adimensional, ou seja, seu valor não depende do sistema de unidades de medida usado. Segundo o CODATA, a constante vale:
 .
Arnold Sommerfeld introduziu esta constante em 1916.


Forma matemática da equação do campo de Einstein[editar | editar código-fonte]

A equação do campo de Einstein descreve como o espaço-tempo se curva pela matéria e, reciprocamente, como a matéria é influenciada pela curvatura do espaço-tempo, ou digamos, como a curvatura dá lugar à gravidade.
A equação do campo se apresenta como se segue:
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde o tensor  é a curvatura de Einstein, uma equação diferencial de segunda ordem em termos do tensor métrico , e  é o tensor de energia-momento. A constante de acoplamento se dá em termos de  é Pi é a velocidade da luz e  é a constante gravitacional.
O tensor da curvatura de Einstein se pode escrever como
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
A equação do campo portanto também pode apresentar-se como se segue:
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
 é um tensor simétrico 4 x 4, assim que tem 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem em número a 6.
Estas equações são a base da formulação matemática da relatividade geral.



Equações de Einstein-Maxwell[editar | editar código-fonte]

Se o tensor energia-momento  é aquele de um campo eletromagnéticoi.e. se o tensor momento-energia eletromagnético
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
é usado, então as equações de campo de Einstein são chamadas equações Einstein-Maxwell:
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D




constante cosmológica (geralmente denotada por lambda maiúsculo Λ) foi proposta por Albert Einstein como uma modificação da teoria original da relatividade geral ao concluir um universo estacionário. Após a descoberta do deslocamento para o vermelho de Hubble e introdução do paradigma do universo em expansão, Einstein abandonou esse conceito. Entretanto, a descoberta de que a expansão do universo ainda está acelerando na década de 1990 renovou o interesse pela constante cosmológica.[1][2]
A constante cosmológica Λ aparece nas equações de campo modificadas de Einstein na forma
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
onde R e g pertencem à estrutura do espaço-tempoT pertence à matéria, e G e c são fatores de conversão com o qual surge do uso tradicional de unidades de medida. Quando Λ é zero, ela se reduz à equação de campo original da relatividade. Quando T é zero, a equação de campo descreve um espaço vazio (o vácuo). As unidades de Λ são segundo-2.
A constante cosmológica possui o mesmo efeito de uma densidade de energia intrínseca do vácuo, ρvac. Neste contexto, é comumente definida como fator proporcional a 8π: Λ = 8πρvac, onde conversões modernas da relatividade geral já estão inseridas (do contrário, os fatores G e c também apareceriam).




constante de Planck, representada por , é uma das constantes fundamentais da Física.[1] Tem um papel fundamental na mecânica quântica, aparecendo sempre no estudo de fenômenos em que a explicação por meio da mecânica quântica é relevante. Tem o seu nome em homenagem a Max Planck, um dos fundadores da teoria quântica. A 26ª Conferência Geral de Pesos e Medidas fixou o valor exato da constante de Planck:[2]
Um dos usos dessa constante é a determinação da energia de um fóton, dada pela seguinte equação:[3]:
x
Nesta equação:
 é a energia do fóton, também conhecida como quantum de energia;
 é a constante de Planck;
 é a frequência da radiação.
x

FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
    x
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
  • X
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

    Constante reduzida de Planck[editar | editar código-fonte]

    Em algumas equações de física, tal como a equação de Schrödinger, aparece o símbolo , que é apenas uma abreviação conveniente para , chamada de constante reduzida de Planck, ou para alguns, constante de Dirac, diferindo da constante de Planck pelo fator . Consequentemente:
    x

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Equações formuladas com base na teoria quântica de Planck explicaram precisamente a radiação de um corpo negro ao longo do espectro eletromagnético. O feito de Planck foi relacionar matematicamente o conteúdo de energia de um quantum à frequência da radiação. Um quantum de energia E, é igual à frequência f da radiação multiplicada pela constante de Planck h. A constante h, um valor extremamente pequeno, é tida atualmente como uma das constantes fundamentais do universo.[4] Não é só a constante de Planck que é pequena, o quantum também é. As unidades de radiação são tão pequenas que são percebidas como contínuas, por exemplo, a luz. Assim como a matéria comum nos parece contínua ainda que saibamos que ela é formada por unidades discretas chamadas "átomos".[4]




    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    quarta-feira, 18 de setembro de 2019


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D


    segunda lei da termodinâmica ou segundo princípio da termodinâmica expressa, de uma forma concisa, que "A quantidade de entropia de qualquer sistema isolado termodinamicamente tende a incrementar-se com o tempo, até alcançar um valor máximo". Mais sensivelmente, quando uma parte de um sistema fechado interage com outra parte, a energia tende a dividir-se por igual, até que o sistema alcance um equilíbrio térmico.
    Enquanto a primeira lei da termodinâmica estabelece a conservação de energia em qualquer transformação, a segunda lei estabelece condições para que as transformações termodinâmicas possam ocorrer. A transformação de calor em trabalho por um processo cíclico exige a presença de duas fontes térmicas mantidas a temperaturas diferentes entre si.

    Equacionamento[editar | editar código-fonte]

    Matematicamente, se expressa assim:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde S é a entropia, dt é o infinitésimo de tempo e o símbolo de igualdade só existe quando a entropia se encontra em seu valor máximo (em equilíbrio).
    Outra maneira mais simples de expressar a segunda lei é: entropia de um sistema isolado nunca decresce. Mas é uma má interpretação comum que a segunda lei indica que a entropia de um sistema jamais decresce. Realmente, indica só uma tendência, isto é, só indica que é extremamente improvável que a entropia de um sistema fechado decresça em um instante dado.
    Como a entropia está relacionada ao número de configurações de mesma energia que um dado sistema pode possuir, podemos nos valer do conceito subjetivo de desordem para facilitar a compreensão da segunda lei (embora entropia não seja essencialmente desordem[5]). Ou seja, a segunda lei afirma, à grosso modo, que a desordem de um sistema isolado só pode crescer ou permanecer igual.

    Citações[editar | editar código-fonte]

    A lei que afirma que a entropia cresce — a segunda lei da termodinâmica tem, segundo o meu pensamento, a posição suprema entre as leis da natureza. Se alguém insistir que a sua teoria preferida do Universo está em desacordo com as equações de Maxwell — então tanto pior para as equações de Maxwell. Se elas contradisserem a observação — bem, essas experiências às vezes dão errado. Mas se a sua teoria está em oposição à segunda lei da termodinâmica, então não posso lhe dar esperança alguma: não há nada a esperar dela, senão cair na maior humilhação.[6]
    Isaac Asimov explica a tendência da entropia crescente e suas consequências de uma forma simples:
    A Segunda Lei da Termodinâmica afirma que a quantidade de trabalho útil que você pode obter a partir da energia do universo está constantemente diminuindo. Se você tem uma grande porção de energia em um lugar, uma alta intensidade dela, você tem uma alta temperatura aqui e uma baixa temperatura lá, então você pode obter trabalho dessa situação. Quanto menor for a diferença de temperatura, menos trabalho você pode obter. Então, de acordo com a Segunda Lei da Termodinâmica, há sempre uma tendência para as áreas quentes se resfriarem e as áreas frias se aquecerem - assim cada vez menos trabalho poderá ser obtido. Até que finalmente, quando tudo estiver numa mesma temperatura, você não poderá mais obter nenhum trabalho disso, mesmo que toda a energia continue lá. E isso é verdade para TUDO em geral, em todo o universo. (Em The Origin of the Universe em ORIGINS: How the World Came to Be, série em vídeo, Eden Communications, EUA, 1983.)

    Questões específicas[editar | editar código-fonte]

    Entropia em mecânica estatística[editar | editar código-fonte]

    Se para um sistema de partículas em equilíbrio térmico se conhece a função de partição Z, dada pelos métodos da mecânica estatística clássica se pode calcular a entropia mediante:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Onde kB é a constante de BoltzmannT a temperatura e as probabilidades Pj que aparecem no somatório vêm dadas pela temperatura e a energia dos microníveis de energia do sistema:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Entropia de Von Neumann na mecânica quântica[editar | editar código-fonte]

    No século XIX o conceito de entropia foi aplicado a sistemas formados por muitas partículas que se comportam classicamente, em princípios do século XX Von Neumann generalizou o conceito de entropia para sistemas de partículas quânticas, definindo para um estado mescla caracterizado por uma matriz densidade ρ a entropia quântica de Von Neumann como a magnitude escalar:

    Entropia generalizada em relatividade geral[editar | editar código-fonte]

    O intento de estender a análise termodinâmica convencional ao universo inteiro levou a se examinar em princípios dos anos 70 o comportamento termodinâmico de estruturas como os buracos negros. O resultado preliminar desta análise revelou algo muito interessante, que a segunda lei tal como havia sido formulada convencionalmente para sistemas clássicos e quânticos poderia ser violada em presença de buracos negros.
    Entretanto, os trabalhos de Jacob D. Bekenstein sobre teoria da informação e buracos negros sugeriram que a segunda lei seguiria sendo válida se fosse introduzida uma entropia generalizada (Sgen) que somada à entropia convencional (Sconv), a entropia atribuível aos buracos negros que depende da área total (A) de buracos negros no universo.
    Concretamente esta entropia generalizada deve definir-se como:
    X

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Onde, k é a constante de Boltzmannc é a velocidade da luzG é a constante de gravitação universal e  é a constante de Planck racionalizada.

    Entropia na cosmologia[editar | editar código-fonte]

    Em cosmologia, na evolução do universo no tempo verifica-se uma diminuição da quantidade de energia disponível para a realização de trabalho. Tal implica uma limitação no tempo da existência do universo tal como se apresenta, pois o sentido natural das mudanças da natureza é o que origina uma diminuição da qualidade da energia. Teoricamente, o universo seria o único sistema realmente isolado, e como tal, nele, a quantidade de energia útil nunca aumenta.[7]
    Tal questão tem profundas implicações em filosofia no tratamento do que chamamos tempo em física[8] e num entendimento do universo com este como uma de suas dimensões e neste em sua história e evolução, implicando difíceis tratamentos no que sejam os modelos cíclicos, entre estes o modelo de universo oscilante ou "grande rebote (big bounce)".[9]

    A segunda lei da termodinâmica e o criacionismo[editar | editar código-fonte]

    Tais conceitos tem trazido algumas distorções desta teorização, principalmente por alguns defensores do criacionismo a respeito dos seres vivos e de sua evolução.[10][11][12][13][14]

    A afirmação criacionista[editar | editar código-fonte]

    A afirmação dos criacionistas mais fervorosos é que o Universo tenderia obrigatoriamente da ordem à desordem, do mais complexo ao mais simples, tornando a origem química da vida (biopoese), o processo evolutivo dos seres vivos, sua formação e regeneração de tecidos a partir da alimentação (como a síntese de proteínas ou a formação de glicose), sua reprodução, a formação de cristais e até a agregação dos corpos celestes, impossível.[15][16][17]
    Criacionistas mais criteriosos tentam demonstrar através da segunda lei da termodinâmica que a diminuição da entropia estaria condicionada a uma interferência externa aos sistemas físicos, e isto abriria a possibilidade dessa interferência ser intencional e planejada por uma entidade inteligente (o que os aproximaria dos defensores do chamado "Design Inteligente"), que supostamente corresponderia a uma divindade, denominável como "Deus". Filosoficamente, o argumento seria válido, porém, não se situaria no campo científico, pois seria uma hipótese não falseável. Contudo, a afirmação contrária, isto é, que Deus não criou também foge do escopo da ciência.

    O erro fundamental do argumento[editar | editar código-fonte]

    Mas a segunda lei da termodinâmica não faz tais afirmações, pois a entropia da termodinâmica não mede o aumento ou diminuição da complexidade dos sistemas, nem seu aumento ou diminuição de ordem.[18] A segunda lei apenas afirma que calor não flui espontaneamente de um corpo a mais baixa temperatura para um corpo de mais alta, equivalentemente, que a energia que pode efetivamente ser transformada em trabalho, em um sistema fechado, nunca aumenta.[nota 1]
    Visto que o planeta Terra (assim como qualquer outro) não é um sistema fechado (e é de se observar que sistemas plenamente fechados e isolados não existem na prática), a entropia termodinâmica pode diminuir. A radiação do Sol (com baixa entropia) ilumina e aquece a Terra (com alta entropia). Desse fluxo de energia, somado as mudanças de entropia que o acompanha, podem e de fato permitem que a entropia termodinâmica diminua localmente na Terra.[19]
    Richard Dawkins, no seu livro "O maior espetáculo da Terra" trata deste argumento, mostrando que quando criacionistas afirmam, até frequentemente, que a evolução biológica contradiz a segunda lei da termodinâmica, estariam mostrando unicamente que não entendem tal lei, pois já não há contradição por causa óbvia da ação do Sol, pois todo sistema, quer estejamos falando sobre a vida, quer sobre as massas de água em seu ciclo na Terra, é em última análise dependente do constante fluxo de energia proveniente desta estrela. Da mesma maneira que jamais desobedece as leis da física e da química, e nunca desobedecendo à segunda lei, a energia do Sol abastece os processos da vida, de modo que, por uma complexa rede de processos, limitada por tais leis, proporciona as estruturas e processos repletos de complexidade, diversidade, e a ilusão de improbabilidade estatística e design dos quais a vida é dotada.
    Uma das maneiras mais simples de mostrar que o argumento criacionista é equivocado do ponto de vista químico (e consequentemente no bioquímico) é apresentar reações químicas simples, que ocorrem naturalmente com complexidade crescente formada, como a formação de ácido carbônicosulfuroso e sulfúrico, a partir da reação de óxidos (respectivamente dióxido de carbonodióxido e trióxido de enxofre) com água[nota 2]:
    CO2 + H2O → H2CO3
    SO2 + H2O → H2SO3
    SO3 + H2O → H2SO4
    Além de todas as polimerizações, onde há crescente complexação molecular, como a polimerização do polietileno:
    n C2H2 → (CH2-CH2)n
    Ou, por vias completamente naturais, a polimerização da glicose formando a celulose:
    Estructura celulosa.png

    X

    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Apesar de entropia termodinâmica e desordem serem muitas vezes correspondentes, nem sempre o são. Algumas vezes a ordem aumenta junto com a entropia.[18][20] O aumento de entropia termodinâmica pode até produzir ordem, como ordenar moléculas por seu tamanho, incluindo o próprio DNA dos seres vivos, ou partículas coloidais em soluções de eletrólitos.[21][22][23] Mesmo em um sistema considerado para efeitos práticos fechado, regiões de baixa entropia podem se formar se eles estão separados de outros locais com alta entropia no sistema.[24]
    Muitas vezes, uma ordem aparentemente surpreendente aparece naturalmente, em processos geológicos, por exemplo. O Calçada dos Gigantes (Giant's Causeway) na Irlanda do Norte consiste de grandes colunas de pedra apresentando secção reta hexagonal, dando a impressão de terem sido projetadas. Foram formadas quando o magma incandescente chegou à superfície da Terra e resfriou-se. Tais tipos de ordem originando-se do caos (emergência) podem ser vistos igualmente em círculos de cascalho e pedras que ocorrem naturalmente numa ilha do norte da Noruega. Pode-se discutir os processos específicos de organização das colunas e dos círculos de pedras, mas a entropia do magma e das pedras diminuiu, ainda que a entropia de seus ambientes tenha aumentado.[25]
    Ao nível microscópico ou molecular, exemplos concretos da não correspondência entre entropia e desordem são comuns[18][26][27]:
    • A comparação da entropia de gases de diferentes massas moleculares, como o hélio e o neônio, sob iguais condições físicas, por exemplo, evidenciará que as moléculas de hélio (no caso, seus átomos isolados, pois um gás nobre), sendo de menor massa, apresentarão maiores velocidades, o que implicará numa "desordem" maior. Mas realmente a entropia do neônio será mais alta.
    • O fenômeno de fases reentrantes, que é observado em diversos cristais líquidos, em materiais com propriedades de supercondução, e até em sistemas mais convencionais, como as misturas de nicotina e água.[28] Nestas misturas, entre diversas características, o diagrama temperatura–composição apresenta uma temperatura crítica de solução superior e outra inferior. Deste modo, em temperatura suficientemente elevada, uma mistura de nicotina e água forma uma fase homogênea. Com o abaixamento da temperatura, num espectro relativamente estreito de composições observa-se a separação em duas fases típicas, uma rica em água, e a outra rica em nicotina. Com a continuidade do resfriamento, a um dado ponto surgirá uma só fase homogênea. A separação destas duas fases sugere uma diminuição da "desordem", enquanto a segunda transformação aponta para uma "ordem". Entretanto, a entropia diminuirá continuamente ao longo de todo o processo, pois o resfriamento implica a energia ter sido continuamente retirada.
    • Outro exemplo é a cristalização em soluções sobressaturadas, quando é considerada uma solução sobressaturada num recipiente adiabático, onde, espontaneamente, deverá ocorrerá a deposição de cristais do soluto. Este fenômeno sugere a diminuição da "desordem", dado que as moléculas ou íons de soluto estarão mais organizadas no cristal do que em solução. Mas sendo o sistema isolado, a entropia deverá aumentar durante o processo, como prenuncia a Segunda Lei da Termodinâmica. Esta conclusão é válida para o caso em que a cristalização seja exotérmica e a temperatura da mistura aumente durante o processo, ou no caso em que a cristalização for endotérmica e a temperatura diminua. No caso exotérmico, o aumento da temperatura da mistura justificaria o aumento da entropia, em contrabalanço à perda associada à cristalização. Entretanto, no caso endotérmico, esse argumento não pode ser aplicado. Como exemplo: as soluções sobressaturadas de sulfato de sódio, resfriam com a formação do sal na forma sólida.
    Esta argumentação de uma associação direta entre entropia termodinâmica e a ordem ou desordem de sistemas é apresentada nos textos criacionistas seguidamente associada com uma passagem de um livro de divulgação científica de Isaac Asimov, que embora didática, é um tanto infeliz ao associar diretamente o conceito de entropia da termodinâmica com o que seja a deterioração de um sistema julgado como organizado pelo ser humano:
    Outra maneira de expressar a segunda lei é, "O universo está constantemente se tornando mais desordenado!" Visto dessa maneira nós podemos ver a segunda lei por toda parte sobre nós. Precisamos trabalhar duro para arrumar uma sala, mas quando a deixamos por si mesma ela se torna bagunçada outra vez muito rapidamente e muito facilmente. Mesmo se nunca entrarmos nela, ela fica empoeirada e mofada. Como é difícil manter casas, máquinas e nossos próprios corpos em perfeita ordem de funcionamento: e como é fácil deixá-los se deteriorarem. De fato, tudo que precisamos fazer é não fazer nada, e tudo se deteriora, entra em colapso, se quebra, desbota, tudo por si mesmo - e é disso tudo que a segunda lei trata.[29]

    História do argumento[editar | editar código-fonte]

    A ideia de que entropia da termodinâmica é o mesmo que desordem foi primeiro divulgada por Duane T.Gish, do Institute for Creation Research (Instituto para Pesquisa da Criação).[30] Outros autores defensores destas ideias são Henry M. Morris e Harold L. Armstrong.[31][32][33]

    Entropia e Evolução das espécies[editar | editar código-fonte]

    Segunda Lei da termodinâmica explica que a energia que pode efetivamente ser transformada em trabalho, em um sistema fechado, nunca aumenta. Portanto, com base essa lei da física as formas de vida primitivas que eram mais simples tendo menos capacidades e sistemas menos complexos, nunca poderiam ter evoluído tornando-se organismos melhor ordenados ao longo do tempo. Assim, tanto a teoria evolutiva e a segunda lei da termodinâmica não poderiam ser ambas corretas[34].
    Contudo, o planeta Terra não é um sistema fechado (a luz do Sol penetra a atmosfera, ilumina e esquenta a Terra). Esse fluxo de energia, e as mudanças de entropia que o acompanha de fato fazem a entropia diminuir localmente na Terra. Porém, todos os três princípios principais da evolução (variação, herdabilidade e seleção) acontecem e a entropia não impede a ocorrência deles. De fato, conexões entre evolução e entropia já foram estudadas profundamente, e a entropia nunca foi um impedimento à evolução [35][36][37][38][39]. Alguns físicos se propuseram a calcular o impacto da 

    terça-feira, 17 de setembro de 2019

    Lei de Planck para radiação de corpo negro exprime a radiância espectral em função do comprimento de onda e da temperatura do corpo negro.
    X


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    A tabela seguinte descreve as variáveis e unidades utilizadas:
    VariávelDescriçãoUnidade
    radiância espectralJ•s−1•m−2•sr−1•Hz−1
    frequênciahertz
    temperatura do corpo negrokelvin
    constante de Planckjoule / hertz
    velocidade da luz no vácuometros / segundo
    número de Eulersem dimensão
    constante de Boltzmannjoule / kelvin
    X


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    O comprimento de onda está relacionado a frequência como (supondo propagação de uma onda no vácuo):
    X


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Pode-se escrever a Lei de Planck em termos de energia espectral:
    X


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    A energia espectral também pode ser expressa como função do comprimento de onda:
    X


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Max Planck produziu esta lei em 1900 e a publicou em 1901, na tentativa de melhorar a expressão proposta por Wilhelm Wien que adequou dados experimentais para comprimentos de onda curtos desviados para comprimentos de onda maiores. Ele estabeleceu que a Lei de Planck adequava-se para todos os comprimentos de onda extraordinariamente bem. Ao deduzir esta lei, ele considerou a possibilidade da distribuição de energia eletromagnética sobre os diferentes modos de oscilação de carga na matéria. A Lei de Planck nasceu quando ele assumiu que a energia destas oscilações foi limitada para múltiplos inteiros da energia fundamental E, proporcional à freqüência de oscilação  [1]:
     .
    Planck assumiu a essa quantização, cinco anos depois de Albert Einstein ter sugerido a existência de fótons como um meio de explicar o efeito fotoelétrico. Planck acreditava que a quantização aplicava-se apenas a pequenas oscilações em paredes com cavidades (que hoje conhecemos como átomos), e não assumindo as propriedades de propagação da Luz em pacotes discretos de energia. Além disto, Planck não atribuiu nenhum significado físico a esta suposição, mas não acreditava que fosse apenas um resultado matemático que possibilitou uma expressão para o espectro emitido pelo corpo negro a partir de dados experimentais dos comprimentos de onda. Com isto Planck pôde resolver o problema da catástrofe do ultravioleta encontrada por Rayleigh e Jeans que fazia a radiança tender ao infinito quando o comprimento de onda aproximava-se de zero, o que experimentalmente não é observado. É importante observar também que para a região do visível a fórmula de Planck pode ser aplicada pela aproximação de Wien e da mesma forma para temperaturas maiores e maiores comprimentos de onda podemos ter também a aproximação dada por Rayleigh e Jeans.




    Em física, a lei de Rayleigh-Jeans, primeiramente proposta no início do século XX, com o objetivo de descrever a radiação espectral da radiação eletromagnética de todos os comprimentos de onda desde um corpo negro a uma temperatura dada. Expressa a densidade de energia de um radiação de corpo negro de comprimento de onda λ como[1]
    X


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    também sendo escrita na forma
    X


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde λ está em metrosc é a velocidade da luzT é a temperatura em Kelvins, e k é a constante de Boltzmann.
    A lei é derivada de argumentos da física clássicaLord Rayleigh obteve pela primeira vez o quarto grau da dependência do comprimento de onda em 1900; uma derivação mais completa, a qual incluia uma constante de proporcionalidade, foi apresentada por Rayleigh e Sir James Jeans em 1905. Esta agregava umas medidas experimentais para comprimentos de onda. Entretanto, esta predizia uma produção de energia que tendia ao infinito já que o comprimento de onda se fazia cada vez menor. Esta idéia não se sustentava pelos experimentos e a falta se conheceu como a "catástrofe ultravioleta"; entretanto, não foi, como as vezes se afirma nos livros-texto de física, uma motivação para a teoria quântica.
    A lei concorda com medições experimentais para grandes comprimentos de onda mas discorda para comprimentos de onda pequenos.
    Em 1900 Max Planck revisou a lei, obtendo uma lei um tanto diferente, a qual estabeleceu:
    X


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    que pode ser escrita também na forma
    X


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde h é a constante de Planck e c é a velocidade da luz. Esta é a Lei de Planck expressa em termos de comprimento de onda λ = /ν. A lei de Planck não sofre de uma "catástrofe ultravioleta", e assim de acordo com os dados experimentais, mas seu pleno significado só se apreciaria vários anos mais tarde. No limite de temperaturas muito altas ou grandes comprimentos de onda, no termo exponencial se converte no pequeno, pelo que o denominador se converte em aproximadamente hc / kT λ série de potências de expansão. Isto lhe dá o nome de Lei de Rayleigh-Jeans.


    lei de Wien (ou lei do deslocamento de Wien) é a lei da física que relaciona o comprimento de onda onde se situa a máxima emissão de radiação eletromagnética de corpo negro e sua temperatura:[1]
    X


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde
     é o comprimento de onda (em metros) onde a intensidade da radiação eletromagnética é a máxima;
     é a temperatura do corpo em kelvin (K), e
     é a constante de proporcionalidade, chamada constante de dispersão de Wien, em m.K (metro x Kelvin).
    O valor dessa constante é  m.K
    O que resulta em:
    X


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Conforme a lei de Wien, quanto maior for a temperatura de um corpo negro, menor será o comprimento de onda para o qual a emissão é máxima. Por exemplo, a temperatura da fotosfera solar é de 5780 K e o pico de emissão se produz a 475 nm =. Como 1 angstrom 1 Å= 10−10 m=10−4 micras resulta que o máximo ocorre a 4750 Å.

    Dedução[editar | editar código-fonte]

    Esta lei foi formulada empiricamente por Wilhelm Wien. Entretanto, hoje se deduz da lei de Planck para a radiação de um corpo negro da seguinte maneira:
    X


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde as constantes valem no Sistema Internacional de Unidades ou sistema MKS:
    Para encontrar o máximo, a derivada da função com respeito a  tem de ser zero.
    Basta utilizar a regra de derivação do quociente e como se tem que igualar a zero, o numerador da derivada será nulo ou seja:
    Se definimos
    então
    Esta equação não pode ser resolvida analiticamente. Utilizando o método de Newton ou da tangente:
    Da definição de x resulta que:
    Assim que a constante de Wien é  pelo que:

    X


    FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     + FUNÇÃO TÉRMICA.

       +    FUNÇÃO DE RADIOATIVIDADE

      ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

      + ENTROPIA REVERSÍVEL 

    +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

     ENERGIA DE PLANCK

    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
    • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    sábado, 14 de setembro de 2019




    Saltar para a navegaçãoSaltar para a pesquisa
    Piroeletricidade (do grego pyr, fogo, e eletricidade) é a capacidade de alguns materiais de gerarem temporariamente um potencial elétrico quando aquecidos ou arrefecidos. A mudança de temperatura modifica ligeiramente as posições dos átomos na estrutura cristalina, de tal modo que a polarização do material é alterada. Esta alteração da polarização dá origem a um potencial elétrico temporário, que desaparece após o tempo de relaxação dielétrica.[1]
    A piroeletricidade não deve ser confundida com termoeletricidade, onde um perfil térmico fixo, não-uniforme, dá origem a uma diferença de potencial elétrico permanente.

      Explicação[editar | editar código-fonte]

      A piroelericidade pode ser visualizada como um dos lados de um triângulo, no qual cada vértice representa estados de energia do cristal: energia cinéticaelétrica e térmica. O lado entre os vértices elétrico e térmico representa o efeito piroelétrico e não produz energia cinética. O lado entre os vértices cinético e elétrico representa o efeito piezoelétrico e não produz calor.
      Embora tenham sido concebidos materiais piroelétricos artificiais, este efeito foi inicialmente descoberto em minerais como a turmalina. O efeito piroelétrico está também presente nos ossos e tendões.
      A carga piroelétrica nos minerais desenvolve-se nas faces opostas de cristais assimétricos. A direção para a qual tende a propagação da carga é usualmente constante ao longo do material piroelétrico, mas em alguns materiais esta direção pode ser alterada por um campo elétrico próximo. Estes materiais dizem-se ferroelétricos. Todos os materiais piroelétricos são também piezoelétricos. Note-se contudo, que alguns materiais piezoelétricos têm uma simetria cristalina que não permite a piroeletricidade.

      História[editar | editar código-fonte]

      A primeira referência ao efeito piroelétrico encontra-se nos escritos de Teofrasto em 314 a.C., que notou que a turmalina atraía palhas e cinzas quando aquecida. As propriedades da turmalina foram redescobertas em 1707 por Johann Georg Schmidt, que reparou nas propriedades atrativas do mineral quando aquecido. A piroeletricidade foi descrita pela primeira vez - apesar de não ter sido assim designada - por Louis Lemery em 1717. Em 1747 Lineu associou pela primeira vez o fenómeno à eletricidade, o que só veio a ser demonstrado por Franz Ulrich Theodor Aepinus, em 1756.
      O estudo da piroeletricidade tornou-se mais sofisticado no século XIX. Em 1824 David Brewster deu ao efeito o nome que hoje tem. Tanto William Thomson em 1878, como Woldemar Voigt em 1897, ajudaram a desenvolver uma teoria para os processos por detrás da piroeletricidade. Pierre Curie e o seu irmão, Jacques Curie, estudaram a piroeletricidade na década de 1880, o que conduziu à descoberta de alguns dos mecanismos por detrás da piezoeletricidade.

      Classes cristalinas piroelétricas[editar | editar código-fonte]

      As estruturas cristalinas podem ser divididas em 32 classes, ou grupos pontuais, segundo o número de eixos rotacionais e planos de reflexão que exibem e que mantém a estrutura do cristal piroelétrico. Entre as 32 classes de cristais, vinte e uma são não-centrossimétricas (não têm centro de simetria). Destas vinte e uma, vinte exibem piezoeletricidade direta, sendo a restante a classe cúbica 432. Dez destas vinte classes piezoelétricas são polares, i.e., exibem uma polarização espontânea, tendo um dipolo na sua célula unitária, e exibem piroeletricidade. Todos os cristais polares são piroelétricos.
      Classes de cristal piezoelétricas: 1, 2, m, 222, mm2, 4, -4, 422, 4mm, -42m, 3, 32, 3m, 6, -6, 622, 6mm, -62m, 23, -43m
      Piroelétricas: 1, 2, m, mm2, 3, 3m, 4, 4mm, 6, 6mm

      Desenvolvimentos recentes[editar | editar código-fonte]

      Têm sido feitos progressos na criação de materiais piroelétricos artificiais, usualmente na forma de uma película fina, a partir de nitreto de gálio (GaN), nitrato de césio (CsNO3), fluoretos de polivinila, derivados de fenilpirazina, e ftalocianina de cobalto (ver cristal piroelétrico). O tantalato de lítio (LiTaO3) é um cristal que exibe tanto propriedades piezoelétricas como piroelétricas que tem sido usado para criar fusão nuclear em pequena escala ("fusão piroelétrica").[2]

      Descrição matemática[editar | editar código-fonte]

      O coeficiente piroelétrico pode ser descrito como a variação do vetor de polarização espontânea com a temperatura[3]:
      x


      FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       + FUNÇÃO TÉRMICA.

         +    FUNÇÃO DE RADIOATIVIDADE

        ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

        + ENTROPIA REVERSÍVEL 

      +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

       ENERGIA DE PLANCK

      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      em que pi (Cm-2K-1) é o vetor do coeficiente piroelétrico.



      Em físicatermodinâmicaquímicafísico-química e física da matéria condensada, um ponto crítico, também chamado de estado crítico, ocorre sob condições (tais como valores específicos de temperatura, pressão ou composição) no qual não existem limites de fase. Existem vários tipos de pontos críticos, incluindo pontos críticos líquido-vapor e líquido-líquido.[1]

        Substâncias puras: ponto crítico líquido-vapor[editar | editar código-fonte]

        O "ponto crítico" é por vezes usado para denotar o ponto especificamente vapor-líquido crítico de um material, a partir do qual a distinção entre fase a líquida e gasosa não existe.
        O ponto crítico de vapor-líquido em um diagrama de fases pressão-temperatura está no extremo de alta temperatura do limite de fase líquido-gás. A linha pontilhada verde mostra o comportamento anômalo da água.[2]
        Como se mostra no diagrama de fases para a direita, isto é o ponto em que a fronteira entre a fase líquida e gasosa termina. Em água, o ponto crítico ocorre em cerca de 647 K. (374 ° C; 705 ° F) e 22,064 MPa (218 atm)
        À medida que a substância se aproxima da temperatura crítica, as propriedades da sua fases gasosa e líquida convergem, resultando em apenas uma fase no ponto crítico: um fluido supercrítico homogêneo. O calor de vaporização é zero no ponto crítico e para além dele, por isso não existe distinção entre as duas fases. No diagrama de Pressão-temperatura, o ponto em que a temperatura crítica e pressão crítica satisfazer é chamado de ponto crítico da substância. Acima da temperatura crítica, um líquido não pode ser formada por um aumento da pressão, apesar de um sólido poder ser formado sob uma pressão suficiente. A pressão crítica é a pressão de vapor, à temperatura crítica. O volume crítico é o volume molar de uma mole do material a uma temperatura e pressão críticas.
        Propriedades críticas variam de material para material, e para muitas substâncias puras estão prontamente disponíveis na literatura. No entanto, a obtenção de propriedades críticas para misturas é mais desafiador.

        Definição matemática[editar | editar código-fonte]

        No caso das substâncias puras, há um ponto de inflexão na curva isotérmica crítica (linha de temperatura constante) com um diagrama de Pressão-Volume. Isto significa que, no ponto crítico: [3][4][5]
        x


        FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

        x
         [EQUAÇÃO DE DIRAC].

         + FUNÇÃO TÉRMICA.

           +    FUNÇÃO DE RADIOATIVIDADE

          ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

          + ENTROPIA REVERSÍVEL 

        +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

         ENERGIA DE PLANCK

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
          x
        • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
        • X
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D

        Isto é, as primeira e segunda derivadas parciais da pressão p no que diz respeito ao volume V são ambos zero, com as derivadas parciais avaliados em temperatura constante T. Esta relação pode ser usada para avaliar dois parâmetros de uma equação de estado em termos das propriedades críticas, tais como os parâmetros a e b na equação de van der Waals.[3]
        Às vezes um conjunto de propriedades reduzidas é definida em termos das propriedades importantes, isto é:[6]
        x


        FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

        x
         [EQUAÇÃO DE DIRAC].

         + FUNÇÃO TÉRMICA.

           +    FUNÇÃO DE RADIOATIVIDADE

          ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

          + ENTROPIA REVERSÍVEL 

        +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

         ENERGIA DE PLANCK

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
          x
        • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
        • X
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
        x


        FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

        x
         [EQUAÇÃO DE DIRAC].

         + FUNÇÃO TÉRMICA.

           +    FUNÇÃO DE RADIOATIVIDADE

          ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

          + ENTROPIA REVERSÍVEL 

        +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

         ENERGIA DE PLANCK

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
          x
        • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
        • X
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D
        x


        FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

        x
         [EQUAÇÃO DE DIRAC].

         + FUNÇÃO TÉRMICA.

           +    FUNÇÃO DE RADIOATIVIDADE

          ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

          + ENTROPIA REVERSÍVEL 

        +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

         ENERGIA DE PLANCK

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
          x
        • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
        • X
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D


        onde  é a temperatura reduzida,  é a pressão reduzida,  é a redução do volume, e  é a constante universal dos gases.



        FUNÇÃO FUNDAMENTAL E GERAL DE GRACELI.

        TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

        x
         [EQUAÇÃO DE DIRAC].

         + FUNÇÃO TÉRMICA.

           +    FUNÇÃO DE RADIOATIVIDADE

          ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

          + ENTROPIA REVERSÍVEL 

        +      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

         ENERGIA DE PLANCK

        X


        • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
          ΤDCG
          X
          Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
          x
          sistema de dez dimensões de Graceli + 
          DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
          x
          sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
          x
        • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
        • X
        • T l    T l     E l       Fl         dfG l   
          N l    El                 tf l
          P l    Ml                 tfefel 
          Ta l   Rl
                   Ll
                   D


        Comentários

        Postagens mais visitadas deste blog

        TEORIAS E FILOSOFIAS DE GRACELI 247